Image Hierarchical Representations Models based on Latent Dirichlet Allocation

نویسندگان

  • Fushun Wang
  • Yan Li
  • Xiaohua Sun
  • Zhenjiang Cai
چکیده

Existing image layer representations methods are very feed-forward, and then not able to deal with small ambiguities. A probabilistic model is proposed, and it learns and deduces each layer in that hierarchy together. Therefore, we consider a recursive probabilistic decomposition process, and derive a new yielded method based on recursive Latent Dirichlet Allocation. We show 2 significant properties of the novel probabilistic method: 1) pulsing another hierarchical to represent the enhanced results on that smooth method; 2) an entire Bayesian method beats a feed-forward running of the novel method. The method can be evaluated on a criterion recognition dataset. It takes the probability of recursive decomposition process into account, and obtains multilayer structure pyramid LDA derived model through the derivation. Experiments demonstrate that the novel technique beats existing hierarchical approaches, and present better performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchically Supervised Latent Dirichlet Allocation

We introduce hierarchically supervised latent Dirichlet allocation (HSLDA), a model for hierarchically and multiply labeled bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-sample label prediction is the p...

متن کامل

HDPsent: Incorporation of Latent Dirichlet Allocation for Aspect-Level Sentiment into Hierarchical Dirichlet Process-Based Topic Models

We address the problem of combining topic modeling with sentiment analysis within a generative model. While the Hierarchical Dirichlet Process (HDP) has seen recent widespread use for topic modeling alone, most current hybrid models for concurrent inference of sentiments and topics are not based on HDP. In this paper, we present HDPsent, a new model which incorporates Latent Dirichlet Allocatio...

متن کامل

以狄式分佈為基礎之多語聲學模型拆分及合併 (Multilingual Acoustic Model Splitting and Merging by Latent Dirichlet Allocation) [In Chinese]

To avoid the confusion of phonetic acoustic models between different languages is one of the most challenges in multilingual speech recognition. We proposed the method based on Latent Dirichlet Allocation to avoid the confusion of phonetic acoustic models between different languages. We split phonetic acoustic models based on tri-phone. And merging the group that selected by Latent Dirichlet Al...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Consistency in Latent Allocation Models

A probabilistic formulation for latent allocation models was introduced in the machine learning literature by Blei et al. (2003) in the study of a corpora of documents. This article addresses the consistency properties of various posterior probabilities on the space of latent allocations, focusing on the “bag of words” model. It is shown that the Latent Dirichlet Allocation and Ewens-Pitman pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Multimedia

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013